Gebaut nach der Anleitung von TTN https://www.thethingsnetwork.org/labs/story/lorawan-gsp-tracker
Quelle erweitern
#include <lmic.h> #include <hal/hal.h> #include <SPI.h> #include <TinyGPS++.h> #include <AltSoftSerial.h> #define LPP_GPS 136 static const int RXPin = 8, TXPin = 9; static const uint32_t GPSBaud = 9600; TinyGPSPlus gps; AltSoftSerial ss(RXPin, TXPin); // RX, TX static const PROGMEM u1_t NWKSKEY[16] = { 0x0C, 0x7D, 0xD7, 0xA4, 0x2D, 0x31, 0x61, 0xA1, 0xD6, 0xDC, 0x4A, 0x86, 0xBC, 0xD8, 0xA9, 0xFE }; static const u1_t PROGMEM APPSKEY[16] = { 0x3F, 0x02, 0x68, 0xFF, 0x6D, 0xA7, 0x08, 0x77, 0xF9, 0x6D, 0xEE, 0xBC, 0x86, 0x3C, 0x70, 0xA5 }; static const u4_t DEVADDR = 0x26011848 ; // <-- Change this address for every node! const unsigned TX_INTERVAL = 10; void os_getArtEui (u1_t* buf) { } void os_getDevEui (u1_t* buf) { } void os_getDevKey (u1_t* buf) { } uint8_t coords[11]; static osjob_t sendjob; static osjob_t initjob; uint8_t cursor = 0; uint8_t channel; // Pin mapping const lmic_pinmap lmic_pins = { .nss = 10, .rxtx = LMIC_UNUSED_PIN, .rst = LMIC_UNUSED_PIN, .dio = {4, 5, 7}, }; void get_coords () { bool newData = false; unsigned long chars; unsigned short sentences, failed; float flat,flon,faltitudeGPS,fhdopGPS; unsigned long age; // For one second we parse GPS data and report some key values for (unsigned long start = millis(); millis() - start < 1000;) { while (ss.available()) { char c = ss.read(); Serial.write(c); // uncomment this line if you want to see the GPS data flowing if (gps.encode(c)) { // Did a new valid sentence come in? newData = true; } } } if ( newData ) { flat=gps.location.lat(); flon=gps.location.lng(); if (gps.altitude.isValid()) faltitudeGPS = gps.altitude.meters(); else faltitudeGPS=0; fhdopGPS = gps.hdop.value(); } //gps.stats(&chars, &sentences, &failed); int32_t lat = flat * 10000; int32_t lon = flon * 10000; int16_t altitudeGPS = faltitudeGPS * 100; int8_t hdopGPS = fhdopGPS; channel = 0x01; coords[0] = channel; coords[1] = LPP_GPS; coords[2] = lat >> 16; coords[3] = lat >> 8; coords[4] = lat; coords[5] = lon >> 16; coords[6] = lon >> 8; coords[7] = lon; coords[8] = altitudeGPS; coords[9] = altitudeGPS >> 8; coords[10] = hdopGPS; } void do_send(osjob_t* j) { // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { // Prepare upstream data transmission at the next possible time. get_coords(); LMIC_setTxData2(1, (uint8_t*) coords, sizeof(coords), 0); Serial.println(F("Packet queued")); } } // Next TX is scheduled after TX_COMPLETE event. void onEvent (ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch(ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); // Disable link check validation (automatically enabled // during join, but not supported by TTN at this time). LMIC_setLinkCheckMode(0); break; case EV_RFU1: Serial.println(F("EV_RFU1")); break; case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break; break; case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); if (LMIC.txrxFlags & TXRX_ACK) Serial.println(F("Received ack")); if (LMIC.dataLen) { Serial.println(F("Received ")); Serial.println(LMIC.dataLen); Serial.println(F(" bytes of payload")); } // Schedule next transmission os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); break; case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break; default: Serial.println(F("Unknown event")); break; } } void setup() { Serial.begin(115200); Serial.println(F("Starting")); ss.begin(GPSBaud); // LMIC init os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); // Set static session parameters. Instead of dynamically establishing a session // by joining the network, precomputed session parameters are be provided. #ifdef PROGMEM // On AVR, these values are stored in flash and only copied to RAM // once. Copy them to a temporary buffer here, LMIC_setSession will // copy them into a buffer of its own again. uint8_t appskey[sizeof(APPSKEY)]; uint8_t nwkskey[sizeof(NWKSKEY)]; memcpy_P(appskey, APPSKEY, sizeof(APPSKEY)); memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY)); LMIC_setSession (0x1, DEVADDR, nwkskey, appskey); #else // If not running an AVR with PROGMEM, just use the arrays directly LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY); #endif #if defined(CFG_eu868) // Set up the channels used by the Things Network, which corresponds // to the defaults of most gateways. Without this, only three base // channels from the LoRaWAN specification are used, which certainly // works, so it is good for debugging, but can overload those // frequencies, so be sure to configure the full frequency range of // your network here (unless your network autoconfigures them). // Setting up channels should happen after LMIC_setSession, as that // configures the minimal channel set. // NA-US channels 0-71 are configured automatically LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band // LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band // LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band // LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band // LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band // LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band // LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band // TTN defines an additional channel at 869.525Mhz using SF9 for class B // devices' ping slots. LMIC does not have an easy way to define set this // frequency and support for class B is spotty and untested, so this // frequency is not configured here. #elif defined(CFG_us915) // NA-US channels 0-71 are configured automatically // but only one group of 8 should (a subband) should be active // TTN recommends the second sub band, 1 in a zero based count. // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json LMIC_selectSubBand(1); #endif // Disable link check validation LMIC_setLinkCheckMode(0); // TTN uses SF9 for its RX2 window. LMIC.dn2Dr = DR_SF9; // Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library) LMIC_setDrTxpow(DR_SF7,14); // Start job do_send(&sendjob); } void loop() { os_runloop_once(); }
https://www.thethingsnetwork.org/labs/story/build-the-cheapest-possible-node-yourself